Course description
Data Mining is an analytical process to explore data looking for patterns. In this course, you will learn how to create a model from a data source and by using data sets and SQL Server Data Tools analyze data. By using business questions like "what customers may be inclined to buy a product" or "how products are grouped" to looking for patterns of fraud, business analytics are a powerful tool to both examine data and look for predictions. Finally, when Data Mining should be used vs a Lift chart will explained giving you power choices in getting control of your data.
Each LearnNowOnline training course is made up of Modules (typically an hour in length). Within each module there are Topics (typically 15-30 minutes each) and Subtopics (typically 2-5 minutes each). There is a Post Exam for each Module that must be passed with a score of 70% or higher to successfully and fully complete the course.
Prerequisites
This course assumes that students have working experience with SQL Server; basic relational database concepts (e.g., tables, queries, and indexing); data transformation services.
Meet the expert
Using Microsoft SQL Server started for Thomas with a Laboratory Information System in version 6.5. The Analysis Service (also called SSAS) option in version 7 got him excited about Data Warehousing, but before he used a production version of SSAS, he became a Database Administrator for versions 6.5 through 2005 while working at a paper mill and home health agency. After writing reports as an application developer for 10 years, he rediscovered Online Analytical Processing (OLAP) implemented into Data Warehouses. Since 2009, he has become a speaker in the SQL Server community and a voice for Microsoft Business Intelligence (MSBI) for enterprises. His transition from Sr. DBA to a Business Intelligence Architect has been a great career path. Thomas has certifications MCP, MCDBA and MCITP in Database Administration and Business Intelligence.
Video Runtime
74 Minutes
Time to complete
279 Minutes
Course Outline
Data Mining Concepts (22:13)
Creating a Model (32:51)
Accuracy and Predicting (19:53)